Chromatic number, orientations and subtrees
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Abstract. In the eighties, Burr proved that if a graph G has chromatic
number least (t—1)?, then every orientation of G contains every oriented
tree of order t. He conjectured that the same holds if (¢ —1)? is replaced
by 2t — 2. We present some evidence towards this conjecture, showing
that if G has chromatic number k and order n then every orientation
of G contains every oriented tree of order k/logs n.
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1 Introduction

The chromatic number x(G) of a graph G is the smallest integer &k such that the
vertex set of G may be partitioned into k parts with no edge of G joining vertices
in the same part. It is a folklore result in graph theory that every graph G con-
tains every tree of order x(G), and complete graphs contain no larger trees. We
are interested in the following Ramsey-type question: if we choose an arbitrary
orientation for each edge of G, what (oriented) trees do we expect to find?

If T is an oriented graph, we write G — T to indicate that every orientation
of G contains an oriented copy of T. Let P, denote the directed path of order n,
i.e., the orientation of an n-vertex path where all edges are directed away from
a root vertex. A classical result (independently found four times!) states the
following.

Theorem 1. [4,5,7,8] If G is a graph, then G — ﬁx(g).

We write #(T') for the smallest integer such that x(G) > (T implies G — T.
The theorem above is thus equivalent to the statement 7 (ﬁn) > n. In the eighties,
Burr established the value of this parameter for oriented stars, and also obtained
a general bound which holds for every tree. We write S, for the oriented star
of order ¢t in which each arc is oriented towards a leaf, and S; for the oriented
star obtained reversing the arcs of S;".

Theorem 2. [3] If t > 2, then 7(S) =

= 2t —2 if S is either S; or S},
2t — 3 otherwise.

Theorem 3. [3] Let G be a graph of chromatic number k, and let T be an
oriented tree of order t. If k > (t — 1)%, then G — T.
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Abusing notation, let #(t) denote the smallest integer k such that G — T for
every oriented tree T of order ¢ and every graph G with x(G) > k. The theorem
above is thus equivalent to the statement 7(¢) < (¢t —1)2. Note that this bound is
quadratic in terms of ¢, whereas the bounds in Theorems 1, 2 and 3 it is linear.
Burr also posed the following conjecture.

Congecture 1. [3] If t > 2, then 7(t) < 2t — 2.

Burr’s conjectured bound is best possible, in the following sense: Koy 3 A S
if S; is an oriented star of order ¢ where all arcs are oriented towards leaves.
(To see this, consider a regular orientation of Ky; 3, i.e., an orientation where
each vertex has the same in- and outdegrees.) The bound in Theorem 3 has been
improved in the last decade.

Theorem 4. [1] Ift > 2 then 7(T) < (}) + 1.

2 Contribution

Our theorem implies that almost every graph G with chromatic number k is
such that G — T for every oriented tree of order k'—°(1). More precisely, the
next theorem states that for all positive C' and sufficiently large k, if G is a
graph with chromatic number k and order n, where n < e(l°g k)¢ /2, then G —» T
for every oriented tree T of order k/(log k)¢. (The required inequality holds for
almost every graph of order n, as proved by Bollobas [2].)

Theorem 5. [6] Let G be a graph with order n and chromatic number k. Then
G — T for every oriented tree of order k/logyn .
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