
Exact Algorithms and Heuristics for the
Perfect Awareness Problem

Felipe de C. Pereira, Pedro J. de Rezende and Cid C. de Souza
Institute of Computing, University of Campinas, Campinas, Brazil

felipe.pereira@students.ic.unicamp.br, {rezende,cid}@ic.unicamp.br

Keywords: Perfect Awreness Problem, Spreading of information, Active influence, Metaheuristic, Integer Programming.
This work was supported in part by Grants from CNPq, Brazil: #313329/2020-6, #130838/2019-5, #309627/2017-6; and

FAPESP, Brazil: #2020/09691-0, #2019/22297-1, #2018/26434-0, #2014/12236-1.

The Perfect Awareness Problem (PAP)
The PAP is an NP-hard problem related to the spreading of information in social net-
works [1]. Let G = (V,E) be a graph that represents a network. For each round τ ≥ 0,
every v ∈ V is either ignorant, (merely) aware or spreader of a given information.

In round τ = 0, all vertices are ignorant, except for a set of spreaders S ⊆ V called
a seed set, whose elements are the seeds. Dissemination goes as follows: a vertex v is
aware in round τ ≥ 1, if there is one spreader neighbor of v in round τ−1. Considering
a threshold function t : V → N+, v is a spreader in round τ ≥ 1, if v have at least t(v)
spreader neighbors in round τ − 1. When dissemination stops (i.e., no vertex becomes
a new spreader) with all vertices being aware, S is called a perfect seed set.

Let {G, t} be an instance of PAP. The objective of the problem is to find a perfect
seed set of minimum size. In Figure 1, the ignorant, aware and spreader vertices are in
gray, yellow and green, respectively. The thresholds are indicated inside the circles.

(a) τ = 0 (b) τ = 1 (c) τ = 2 (d) τ = 3

Figure 1: Example of the propragation process of PAP.

Techniques for Preprocessing Instances
(I) Solve the PAP for each connected component of G separately;

(II) Contract any edge {u, v}, with t(u) = t(v) = 1;

(III) Collapse u and v into one vertex, whenever t(v) = 1 and v is u’s only neighbor.

Integer Programming
Let n = |V |. Define a binary variable sv,τ to be 1 iff vertex v is a spreader at round τ .
Our integer programming formulation for PAP reads:

min z =
∑
v∈V

sv,0 (1)∑
u∈N(v)

su,τ−1 − t(v)(sv,τ − sv,0) ≥ 0 ∀v ∈ V ∀τ ∈ [1, n] (2)

sv,0 +
∑

u∈N(v)

su,n−1 ≥ 1 ∀v ∈ V (3)

sv,τ ∈ {0, 1} ∀v ∈ V ∀τ ∈ [0, n] (4)

The objective function (1) minimizes the size of the seed set. Constraints (2) ensure
that v is a spreader in round τ , only if either v belongs to the seed set or the number of
its neighboring spreaders in round τ − 1 is greater than or equal to t(v).

Since |V | = n, a full propagation takes at most n + 1 rounds to end. Hence, con-
straints (3) enforce that either v is a seed or has at least one neighboring spreader in
round τ = n− 1, which means that v is necessarily aware in round n.

Metaheuristic GRASP
GRASP [2] is a metaheuristic comprised of iterations with two distinct phases. Firstly,
a feasible solution S is built by inserting elements from a candidate list (CL) into a set
S, according to a randomized greedy criterion based on a benefit function.

Secondly, a local search is applied with the objective of improving S. The best
solution obtained from all iterations is returned. Algorithms 1 and 2 illustrate a GRASP.

Algorithm 1: Metaheuristic GRASP
Input : Instance I
Output: Solution S

1 S ← ∅
2 while stop condition not satisfied do
3 S′ ← ConstructionPhase(I)
4 S′ ← LocalSearchPhase(I, S′)
5 if (S = ∅) ∨ (S′ is better than S) then
6 S ← S′

7 return S

Algorithm 2: Construction Phase
Input : Instance I
Output: Solution S

1 S ← ∅
2 CL← BuildCL(I)
3 while S is not feasible do
4 CalculateBenefits(CL)
5 v ← SelectElement(CL)
6 S ← S ∪ {v}
7 return S

We developed four heuristics for PAP based on GRASP called Greedy Randomized
(GR), Weighted Greedy Randomized (WGR), Random plus Greedy (RG), and Sampled
Greedy (SG). They differ mainly by the approach adopted in the construction phase.

In each of them, while S is being augmented, we extend the propagation started from
the initial seed set whenever a new seed is chosen. We also define the benefit function
b(v) as the number of ignorant neighbors of v.

In GR, we randomly select a new seed from {v∈CL :b(v)≥bmax−bα (bmax−bmin)c},
for a given α ∈ [0, 1], where bmin and bmax are the minimum and maximum benefits.

For WGR, the criterion is the same, but the chances of v be selected are proportional
to the number of neighbors that will immediately become spreaders if we add v into S.

For RG, we randomly choose a new seed from CL in the first p steps, for a given p.
For the remaining steps, we select the vertex v that maximizes b(v).

In SG, we get a random subset R of CL with size ` in each step, for a given `. Then,
we select the vertex v ∈ R that maximizes b(v) as the next new seed.

The local search of our heuristics are similar and based on the following idea. Given
S′ ⊂ S, we simulate a propagation starting from S \ S′. If S \ S′ is feasible, we make
S ← S \ S′. Otherwise, we remove from S all vertices in S′ that became spreaders.

Results
We generated a benchmark of 840 PAP instances. For 281 of them we obtained the
optimum value using the integer programming formulation. Table 1 shows for how
many of these 281 instances our heuristics produced an optimal solution.

Table 1: Optimal solutions attained by our heuristics
Heuristic GR WGR RG SG
Optimal 277 258 280 281

References
[1] G. Cordasco, L. Gargano, and A. A. Rescigno. “Active influence spreading in social networks”. In:

Theoretical Computer Science, 764 (2019), pp. 15–29.
[2] M. G. Resende and C. C. Ribeiro. “Greedy randomized adaptive search procedures: Advances, hy-

bridizations, and applications”. In: Handbook of Metaheuristics. Springer, 2020, pp 283–319.

